If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x-9)/(x^2-9)=7
We move all terms to the left:
(3x-9)/(x^2-9)-(7)=0
Domain of the equation: (x^2-9)!=0We multiply all the terms by the denominator
We move all terms containing x to the left, all other terms to the right
x^2!=9
x^2!=9/
x^2!=√1/0
x!=1
x∈R
(3x-9)-7*(x^2-9)=0
We multiply parentheses
-7x^2+(3x-9)+63=0
We get rid of parentheses
-7x^2+3x-9+63=0
We add all the numbers together, and all the variables
-7x^2+3x+54=0
a = -7; b = 3; c = +54;
Δ = b2-4ac
Δ = 32-4·(-7)·54
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-39}{2*-7}=\frac{-42}{-14} =+3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+39}{2*-7}=\frac{36}{-14} =-2+4/7 $
| -3(9x-7)=25+8x | | 42+2x=3x+4=180 | | 6(4+2x)=96 | | 2(m+7)-3(m+1)=4(m-7) | | 15+2x=56 | | (6y^2-21y-291)/(y^2-4y-45)=6 | | 2(2+3x)=58 | | 3(2x+4)=8(x-1) | | x-2/2-x-3=8 | | (3y+5)+(2y-7)+0=180 | | 3n-5n=11 | | 8x/2=4(x+2) | | -8(x+8)+7=3(x+5) | | (2+2x)=20/2 | | (3m^2−2m−8)/(m^2+m-6)=2 | | +9x+9x=0 | | (2+2x)=22/2 | | 0,5m=1/2 | | (x+3)(x+3)-20=X2+5x+2 | | (4y^2-8y+12)/(y^2+y-6)=3 | | 4/x+1=2 | | (2+2x)=18/2 | | 2a+16=36 | | (2+2x)=16/2 | | (2+2x)=32/2 | | 8x^2-8x+30=0 | | -6b+78=3b+43 | | (2+2x)=32/2x | | 4(2+2x)=32/2x | | 8+n=18 | | -22-6x=3(5x+9) | | 5n=n16 |